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Bayesian Inference

In gravitational-wave inference, the physical parameters θ that describe an astrophysical source,

such as masses and spins, are inferred from the observed gravitational wave data d. This inference
is carried out in Bayesian framework centred around Bayes’ theorem [1]

p(θ|d, H) = p(d|θ, H)p(θ|H)
p(d|H) ,

where p(d|θ is the likelihood, p(θ|H) is the prior, p(d|H) is the Bayesian evidence, often denoted

Z , and p(θ|d, H) is the posterior distribution. However, we typically cannot directly compute the

posterior distribution and instead use stochastic algorithms such as Markov Chain Monte Carlo and

Nested Sampling to sample the distribution [2].

Nested sampling
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Nested sampling is a stochastic sampling algorithm pro-

posed by John Skilling [3] in which the Bayesian evidence

is rewritten as a one-dimensional integral in terms of the

prior volume X

Z =
∫ 1

0
L(X)dX.

This allows the integral to be approximated by considering

an ordered sequence of decreasing points in prior volume,

evaluating the likelihood and approximating the integral.

Figure 1: Visual representation of the core nested sampling

idea, adapted from [3]. Top: an arbitrary likelihood surface

with four likelihood contours. Bottom: the one-dimensional

representation of the same parameter space in terms of the

prior volume X , the curve is strictly monotonic and the area

under the curve (the evidence) can therefore be approxi-

mated using, for example, the trapezoidal rule.

Challenges with nested sampling

The main bottleneck in a nested sampling algorithm is drawing new samples as the algorithm pro-

gresses. New samples must be:

I Independent and identically distributed (i.i.d),

I Distributed according to the prior,

I Have a greater likelihood than the point being replaced.

Current approaches typically rely upon either using random walks to propose new points or con-

structingmultiple bounding distributionswhich can then be sampled from directly [4]. Gravitational-

wave inference often requires combining both these methods to produce reliable results [5].

NESSAI: Nested Sampling with Artificial Intelligence

NESSAI (/ˈnɛsi/) [6] has been developed to address the aforementioned challenge of proposing

new points. The standard proposal process is replaced with a machine learning based alternative

which allows us to directly draw new samples from the current likelihood contour without using

a random walk.
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Figure 2: Visualisation of the core idea used in NESSAI. At a given iteration, the current set of

live points are used to approximate the current likelihood contour using a normalising flow. New

i.i.d samples can then be drawn from within the current likelihood contour.
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Normalising flows

Normalising flows [7] are a type of generative machine learning algorithm and learn to map a com-

plex distribution pX to a simple latent distribution pZ via a series of transforms.

. . .
pX pZ

This mapping is constructed to be invertible and to have a tractable Jacobian determinant. This

allows an explicit expression for the distribution learnt by the normalising flow to be written down

pX (x) = pZ(f(x))
∣∣∣∣det

(
∂f(x)
∂xT

)∣∣∣∣ . (1)

This contrasts with other generative machine learning algorithms, such as Variational Autoencoders

and Generative Adversarial Networks, where the PDF of the learnt distribution is intractable.

Using normalising flows to construct contours
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Figure 3: In NESSAI a normalising flow is trained on the current set of live points such that the

trained flow maps the live points to an n-dimensional Gaussian latent space where a contour of

equal likelihood is an (n − 1)-sphere. Any point that is then mapped from the sampling space to

the latent space will have a corresponding likelihood contour in the latent space and since the flow

is invertible, we can map this contour back to the sampling space. To draw new samples we then

sample from the n-dimensional Gaussian, apply the inverse mapping and perform rejection sampling

to ensure the samples are distributed according to the prior.
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The core algorithm in NESSAI can be broken down in to three main

stages:

1. Training: The normalising flow is trained on the current set of live

points by minimising the KL-divergence.

2. Population: The current worst point is used to construct the

likelihood contour and a pool of new candidate live points is

populated.

3. Proposal: New live points are drawn from the pool and accepted if

their log-likelihood is greater than the current worst point. This

proceeds until the the pool is empty.

Challenges with NESSAI

There are some inherent challenges in NESSAI related to the choice of normalising flow:

I We must balance complexity and training time,

I There is a very limited amount of training data.

We find a normalising flow based on affine coupling tranforms [8] the best balance between com-

plexity and cost of training. However, we note that certain features can be problematic with this

type of flow and therefore introduce a series of reparameterisations which result in a distribution

that is better suited to the flow.
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Figure 4: Example reparameterisation for an angular parameter θ that is periodic on [0, 2π]. The
angle is transformed to Cartesian coordinates by introducing an auxiliary radial parameter that is

drawn from a chi-distribution with two degrees of freedom. The resulting distribution is Gaussian

and naturally includes the periodicity.
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Validating NESSAI

We validate NESSAI by analysing 128 simu-

lated gravitational waves from binary black

hole mergers and performing a series of tests,

including comparing our results to those ob-

tainedwithDYNESTY [9], another nested sam-

pler that is often used for gravitational wave

inference [10, 5].

Figure 5: Probability-probability (P-P) plots

produced using NESSAI. These test whether

the correct fraction of injected events are re-

covered for a given confidence interval given

the posterior distribution for each event.
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Comparing NESSAI to DYNESTY

We also compare results obtained with NESSAI to those obtained with DYNESTY. We start by com-

paring the log-evidences obtained with each sampler and find good agreement (see below). We

also use the results from DYNESTY to evaluate the number of likelihood evaluations and the total

time required to reach convergence. We find that on average NESSAI requires 2.07 times fewer

likelihood evaluations.
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Figure 6: Relative difference in log-evidence, number of likelihood evaluations and runtime in hours

for all 128 CBC injections when sampling with NESSAI (solid) and DYNESTY (dashed).

Example results
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Figure 7: Example corner plot comparing the

posterior distributions obtained with NESSAI and
DYNESTY for an injected CBC signal with a net-

work SNR of 14.9. Some of the parameters have

been omitted.

Sampler Likelihood evaluations Time (hrs)

DYNESTY 9.02 × 106 36.3
NESSAI 2.82 × 106 9.0
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Parellelisation with NESSAI

An inherent benefit of the core algorithm in NESSAI is that there is a natural point at which the

likelihood evaluation can be parallelised: after the population state when the pool of new live point

has been populated. We implement this in NESSAI and show below how this can reduce the overall

time to reach convergence. However, since the cost of training and population do not decrease,

there is a lower limit to minimum time.

20 21 22 23 24

Number of threads

2 1

21

23

Ti
m

e 
(h

rs
)

Population
Training
Likelihood evaluation
Total
Sum
Theoretical

Figure 8: Comparison of total time spent on each part of the core algorithm in NESSAI as a function
of the number of threads used for evaluating the likelihood.

Diagnostic plots

NESSAI also includes a range of plots to help

diagnose problems with convergence. These

allow the user to identify issues during sam-

pling and adjust the samplers settings accord-

ingly without the need to have other results

for comparison.

Figure 9: Plot of the insertion indices [11] for

two runs, this allows us to check that new

live points have been inserted according to

the ordered statistics wewould expect, which

should result in a uniform distribution.
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Using NESSAI

Have a model that is slow to evaluate and taking a long time to sample? Then you should give

NESSAI a try, it could save you a lot of time!

Why should I use NESSAI?

I NESSAI can speed up inference
I NESSAI can easily parallelise the likelihood evaluation
I NESSAI is not limited to applications in gravitational-wave inference
I NESSAI contains diagnostics that allows you to identify issues during sampling without

repeating the analysis

How can I use NESSAI?

NESSAI is available to install via pip:

$ pip install nessai

It is also supported in BILBY [10]. Click the following button to try NESSAI out without any
installation in your browser:

For more details about NESSAI, see our paper [6], documentation and GitHub repository.
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